

ENERGIEAUSWEIS

für das Objekt

RATHAUSPLATZ 2

in

Rathausplatz 2 2230 Gänserndorf

Auftraggeber:

Stadtgemeinde Gänserndorf

Rathausplatz 1 2230 Gänserndorf

GZ.: 21/502 Datum: Gänserndorf, 28.07.2022

Energieausweis für Nicht-Wohngebäude

OIB-Richtlinie 6 Ausgabe: April 2019

BEZEICHNUNG Rathausplatz 2 Umsetzungsstand Bestand Gebäude (-teil) **BESTAND** Bauiahr ca. 1967, Teilsanierung 20 Nutzungsprofil Bürogebäude Letzte Veränderung Zu- & Umbau 2016 Straße Rathausplatz 2 Katastralgemeinde Gänserndorf PLZ, Ort 2230 Gänserndorf KG-Nummer 6006 Grundstücksnummer 424/4 Seehöhe 165,00 m

	HWB _{Ref,Sk}	C PEB _{SK}	CO _{2eq,SK}	f GEE,SK
4++				
4+				
A				
В			В	
С				
D				D
E				
F	F			

HWBRef: Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der **Warmwasserwärmebedarf** ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

KB: Der Kühlbedarf ist jene Wärmemenge, welche aus den Räumen abgeführt werden muss, um unter der Solltemperatur zu bleiben. Er errechnet sich aus den nicht nutzbaren inneren und solaren Gewinnen.

BefEB: Beim Befeuchtungsenergiebedarf wird der allfällige Energiebedarf zur Befeuchtung dargestellt. **KEB:** Beim **Kühlenergiebedarf** werden zusätzlich zum Kühlbedarf die Verluste des Kühlsystems und der Kältebereitstellung berücksichtigt.

RK: Das Referenzklima ist ein virtuelles Klima. Es dient zur Ermittlung von Energiekennz ahlen. **BelEB**: Der **Beleuchtungsenergiebedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht dem Energiebedarf zur nutzungsgerechten Beleuchtung

BSB: Der Betriebsstrombedarf ist als flächenbezogener Defaultwert festgelegt und entspricht der Hälfte der mittleren inneren Lasten.

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den jeweils allfälligen Betriebsstrombedarf, Kühlenergiebedarf und Beleuchtungsenergiebedarf, abzüglich allfälliger Endenergieerträge und zuzgülich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

fGEE: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergiebetarfs und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einer Referenz-Endenergiebedarf(Anforderung 2007).

PEB: Der Primärenergiebedarf ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEBern.) und einen richt erneuerbaren (PEBn.ern.) Anteil auf.

CO2eq: Gesamte dem Endenergiebedarf zuzurechnenden äquivalenten Kohlendioxidemissionen (Treibhausgase), einschließlich jener für Vorketten.

SK: Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Energieausweis für Nicht-Wohngebäude

OIB-Richtlinie 6 Ausgabe: April 2019

ecotechNiederösterreich

GEBÄUDEKENNDATEN					EA-Art:	K
Brutto-Grundfläche (BGF)	276,3 m²	Heiztage	365 d	Art der Lüftung	Fenst	erlüftung
Bezugsfläche (BF)	221,0 m ²	Heizgradtage	3.636 Kd	Solarthermie		0 m ²
Brutto-Volumen (VB)	1.015,3 m ³	Klimaregion	N	Photovoltaik		0,0 kWp
Gebäude-Hüllfläche (A)	804,9 m ²	Norm-Außentemperatur	-13,8 °C	Stromspeicher		0,0 kWh
Kompaktheit A/V	0,79 1/m	Soll-Innentemperatur	22,0 °C	WW-WB-System (primär)	Stror	ndirekth.
charakteristische Länge (Ic)	1,26 m	mittlerer U-Wert	0,85 W/(m²K)	WW-WB-System (sekundär, opt.)		
Teil-BGF	0,0 m²	LEK _T -Wert	78,19	RH-WB-System (primär)	Fe	rnwärme
Teil-BF	0,0 m²	Bauweise	mittelschwer	RH-WB-System (sekundär, opt.)		
Teil-VB	0,0 m ^a			Kältebereitstellungs-System		Keines

WÄRME- UND ENERGIEBEDARF (Referenzklima)

	E	rgebnisse
Referenz-Heizwärmebedarf	HWB _{ref,fix} =	218,8 kWh/m²a
Heizwärmebedarf	HWB _{RK} =	215,0 kWh/m²a
Außeninduzierter Kühlbedarf	KB*RK =	0,0 kWh/m³a
Endenergiebedarf	EEBak=	290,8 kWh/m²a
Gesamtenergieeffizienz-Faktor	fgee ak =	2,07

WÄRME- UND ENERGIEBEDARF (Stande	ortklima)			
Referenz-Heizwärmebedarf	Qh, Ref, SK=	66 627 kWh/a	HWB _{ref,8K} =	241,2 kWh/m²a
Heizwärmebedarf	Qn, nx =	65 590 kWh/a	HWB _{sk} =	237,4 kWh/m²a
Warmwasserwärmebedarf	Q _{tw} =	669 kWh/a	WWWB =	2,4 kWh/m²a
Heizenergiebedarf	Q _{HEB, SK} =	75 531 kWh/a	HEBsx =	273,4 kWh/m²a
Energieaufwandszahl Warmwasser			esawz,ww =	2,13
Energieaufwandszahl Raumheizung			евамилн =	1,11
Energieaufwandszahl Heizen			esawz.n =	1,12
Betriebsstrombedarf	Qasa =	4 685 kWh/a	BSB =	17,0 kWh/m²a
Kühlbedarf	Q.KB, 5K =	851 kWh/a	KBsk =	3,1 kWh/m²a
Kühlenergiebedarf	Q _{KEB, SK} =	0 kWh/a	KEBsk =	0,0 kWh/m²a
Energieaufwandszahl Kühlen			esawzx =	0,00
Befeuchtungsenergiebedarf	Queeb, sk =	0 kWh/a	BefEBsk=	0,0 kWh/m²a
Beleuchtungsenergiebedarf	Q _{0eEB} =	7 117 kWh/a	BelEBsk =	25,8 kWh/m²a
Endenergiebedarf	Qeeb, sk =	87 334 kWh/a	EEBsk=	316,1 kWh/m²a
Primärenergiebedarf	QPEB.SK =	140 135 kWh/a	PEBsk=	507,2 kWh/m²a
Primärenergiebedarf nicht erneuerbar	QPEBn.nen, SK=	34 360 kWh/a	PEBnam_sk=	124,4 kWh/m²a
Primärenergiebedarf erneuerbar	QPEBem, 5K =	105 775 kWh/a	PEBem.sx=	382,9 kWh/m²a
Kohlendioxidemissionen	Q002, sx =	7 402 kg/a	CO2sk=	26,8 kg/m²a
Gesamtenergieeffizienz-Faktor			fore,sk =	2,11
Photovoltaik-Export	Q _{PVE, SK} =	0 kWh/a	PV _{Export,5K} =	0,0 kWh/m²a

EKSTELLI		Festellesis	Di Johann EDTI Ziviliannia / Elabarra
GWR-Zahl		ErstellerIn	DI Johann ERTL - Zivilingenieur für Bauwesen 2230 Gänserndorf, www.ertl-stehno.at
Ausstellungsdatum	28.07.2022		DIPL. ING JUHANN ERTE
Gültigkeitsdatum	28.07.2032	Unterschrift	BEHORDLICH AUT DRUEFTER UND BEEIDETER
Geschäftszahl	21/502		ZIVII -INGENTA R AUA BAUWESEN
			2230 GÄNSERNOOR BRUNNENGASSE 62/A
			TEL 022 82/8/ 2/ 01/368 65 22

Energieausweis

OIB-Richtlinie 6 Ausgabe: April 2019

Wände gegen Außenluft				
AW02_25 cm MWK WDVS	U =	0,40 W/m²K	nicht relevant	
AW01_25 cm MWK	U =	1,30 W/m²K	nicht relevant	
AW03_38 cm MWK WDVS	U =	0,40 W/m ² K	nicht relevant	
Wände gegen unbeheizte, frostfrei zu haltende G	Gebäudeteile (aus	genommen Dach	räume) sowie gegen Garagen	
IW01_25 cm MWK	U =	1,16 W/m ² K	nicht relevant	
IW02_10 cm MWK	U =	1,77 W/m ² K	nicht relevant	
Wände (Zwischenwände) innerhalb Wohn- und E	Betriebseinheiten			
IW01_25 cm MWK	U =	1,16 W/m ² K	nicht relevant	
Fenster, Fenstertüren, verglaste Türen jeweils in	Nicht-Wohngebä	uden (NWG) geg	en Außenluft	
AF1_1,7/1,45	U =	1,31 W/m ² K	nicht relevant	
AF3_2,00/0,80	U =	0,89 W/m²K	nicht relevant	
AT1_1,60/2,30	U =	1,35 W/m²K	nicht relevant	
AF2_1,6/0,75_OL	U =	1,31 W/m²K	nicht relevant	
Türen unverglast gegen unbeheizte Gebäudeteil	е			
IT1_1,00/2,00	U =	3,00 W/m ² K	nicht relevant	
Decken und Dachschrägen jeweils gegen Außen	luft und gegen Da	achräume (durch	lüftet oder ungedämmt)	
DE02 - Decke zu Dachboden	U =	0,64 W/m²K	nicht relevant	
Decken gegen unbeheizte Gebäudeteile				
DE01 - Decke zu EG	U =	0,82 W/m ² K	nicht relevant	
DE04 - Decke Stgh. zu Stgh. EG-KG	U =	2,04 W/m²K	nicht relevant	
Decken innerhalb von Wohn- und Betriebseinhe	iten			
DE03 - Decke Stgh. zu Stgh. EG-1.OG	U =	2,44 W/m²K	nicht relevant	

Anhang zum Energieausweis gemäß OIB Richtlinie 6 (Kapitel 6)

Verwendete Hilfsmittel und ÖNORMen

Gegebenheiten aufgrund von Plänen und Begehung vor Ort Berechnungen basierend auf der OIB-Richtlinie 6 (2019) Klimadaten und Nutzungsprofil nach ÖNORM B 8110-5 Heizwärmebedarf nach ÖNORM B 8110-6 Endenergiebedarf nach ÖNORM H 5056, 5057, 5058, 5059 Primärenergiebedarf und Gesamtenergieeffizienz nach ÖNORM H 5050 Anforderungsgrenzwerte nach OIB-Richtlinie 6 Berechnet mit ECOTECH 3.3

Ermittlung der Eingabedaten				
Geometrische Daten	Gemäß Energieausweis vom 19.09.2011 sowie Einreichplan von 2016 (Planverfasser: Ing. Wolfgang Kölbl).			
Bauphysikalische Daten	Gemäß Energieausweis vom 19.09.2011.			
Haustechnik Daten	Gemäß Energieausweis vom 19.09.2011.			
Weitere Informationen				

Gemäß Auskunft AG wurden in den letzten 10 Jahren der Gaskessel entfernt und das Gebäude an das Fernwärmenetz angeschlossen. Dies wurde bei der Erstellung des Energieausweises berücksichtigt.

Änderungen der ÖNORMEN innerhalb der letzten 10 Jahre, die der Energieausweisberechnung zugrunde liegen, wurden im Energieausweis berücksichtigt. Dies betrifft u.a das Nutzungsprofil sowie die Berechnung der solaren Gewinne. Daraus resultierend können sich geänderte Ergebnisse gegenüber der Berechnung aus 2011 ergeben.

Die im Energieausweis ausgewiesenen Kennzahlen hinsichtlich Wärme- und Energiebedarf (HWB, EEB, etc.) stellen Normverbrauchswerte dar. Diese Werte lassen keine endgültigen Rückschlüsse auf den tatsächlichen Energieverbrauch zu, da dieser auch abhängig ist vom tatsächlichen Nutzerverhalten und auch von klimabedingten, standortspezifischen Besonderheiten.

Kommentare

Es wird nur jener Teil des Gebäudes (beheizte Zone) betrachtet, in dem sich das Jugendzentrum befindet. Die im Gebäude vorhandenen Kanzleiräumlichkeiten werden nicht betrachtet. Die Abgrenzung / Trennwand zwischen den beiden Gebäudeteilen wird als adiabatisch (warm zu warm) berücksichtigt.

Grundsätzlich wird davon ausgegangen, dass bei sämtlichen Bestandsaufbauten den wärmetechn. Anforderungen zum Zeitpunkt der Einreichung entsprochen wurde. Wenn keine genaueren Unterlagen vorhanden waren, wurden Annahmen von üblichen Bauweisen zum Zeitpunkt der Errichtung und unter Einhaltung der Anforderungen zum Zeitpunkt der Einreichung getroffen.

Der Energieausweis wurde auf Grundlage der erhobenen und bekannt gewordenen Sachverhalte erstellt. Sollten zukünftig weitere relevante Sachverhalte bekannt werden, ist der Energieausweis diesbezüglich zu ergänzen.

Empfehlungen von Maßnahmen gemäß OIB Richtlinie 6 (Kapitel 6)

Zweckmäßige Maßnahmen, die den Energiebedarf des Gebäudes reduzieren

Um die Anforderungen an die Energiekennzahlen bei größeren Renovierungen gem. OIB-RL 6 zu erfüllen, werden folgende Sanierungsmaßnahmen vorgeschlagen:

- Anbringen von mind. 14 cm Wärmedämmung an Aussenwänden
- Anbringen von mind. 5 cm Wärmedämmung an Innenwänden zu Garage EG
- Verbesserung der Dämmung der Decke zum EG um min. 6 cm Dämmstärke
- Verbesserung der Dämmung der Decke zu Dachboden um min. 14 cm Dämmstärke
- Tausch der Bestands-Fenster auf Fenster mit Uw <= 1,4 W/m²K
- Tausch der Bestands-Eingangstür auf Tür mit Uw <= 1,7 W/m²K

Datenblatt zum Energieausweis

Anzeige in Druckwerken und elektronischen Medien

Ergebnisse bezogen auf Gänserndorf

HWB_{Ref} 241,2

fGEE 2,11

Ermittlung der Eingabedaten

Geometrische Daten: Gemäß Energieausweis vom 19.09.2011 sowie Einreichplan von 2016 (Planverfasser: Ing. Wolfgang

Kölbl).

Bauphysikalische Daten: Gemäß Energieausweis vom 19.09.2011. Haustechnik Daten: Gemäß Energieausweis vom 19.09.2011.

Haustechniksystem

Raumheizung: Fernwärme Heizwerk (erneuerbar)

Warmwasser: Elektrische WW-Bereitung od. gasbeheizter Speicher

Lüftung: Lüftungsart Natürlich

Berechnungsgrundlagen

Gegebenheiten aufgrund von Plänen und Begehung vor Ort; Berechnungen basierend auf der OIB-Richtlinie 6 (2019); Klimadaten und Nutzungsprofil nach ÖNORM B 8110-5; Heizwärmebedarf nach ÖNORM B 8110-6; Endenergiebedarf nach ÖNORM H 5056, 5057, 5058, 5059; Primärenergiebedarf und Gesamtenergieeffizienz nach ÖNORM H 5050; Anforderungsgrenzwerte nach OIB-Richtlinie 6; Berechnet mit ECOTECH 3.3

Allgemein

Nutzungsprofil

Bauweise Mittelschwer, fBW = 20,0 [Wh/m³K] Wärmebrückenzuschlag Pauschaler Zuschlag

Keller Keller ungedämmt Verschattung Vereinfacht

Erdverluste Vereinfacht

innere Wärmegewinne Heizfall, bezogen auf BF

innere Wärmegewinne Kühlfall, bezogen auf BF

Tägliche Warmwasser-Wärmebedarf, bezogen auf BF

innere Wärmegewinne Heizfall für Passivhaus, bezogen auf BF

Luftwechselrate bei Raumlufttechnik

Wartungswert der Beleuchtungsstärke

Luftwechselrate bei Fensterlüftung

Luftwechselrate bei Nachtlüftung

Feuchteanforderung

Anforderungsniveau für Energieausweis Keine Anforderungen (Bestand) Energiekennzahl für Anforderung Gesamtenergieeffizienz-Faktor fGEE

Ab 1.1.2021 Zeitraum für Anforderungen

Nutzungsprofil	Bürogebäude			
Nutzungstage Januar	d_Nutz,1 [d/M]	23	(Lt. ÖNORM B 8110-5)	
Nutzungstage Februar	d_Nutz,2 [d/M]	20	(Lt. ÖNORM B 8110-5)	
Nutzungstage März	d_Nutz,3 [d/M]	23	(Lt. ÖNORM B 8110-5)	
Nutzungstage April	d_Nutz,4 [d/M]	22	(Lt. ÖNORM B 8110-5)	
Nutzungstage Mai	d_Nutz,5 [d/M]	23	(Lt. ÖNORM B 8110-5)	
Nutzungstage Juni	d_Nutz,6 [d/M]	22	(Lt. ÖNORM B 8110-5)	
Nutzungstage Juli	d_Nutz,7 [d/M]	23	(Lt. ÖNORM B 8110-5)	
Nutzungstage August	d_Nutz,8 [d/M]	23	(Lt. ÖNORM B 8110-5)	
Nutzungstage September	d_Nutz,9 [d/M]	22	(Lt. ÖNORM B 8110-5)	
Nutzungstage Oktober	d_Nutz,10 [d/M]	23	(Lt. ÖNORM B 8110-5)	
Nutzungstage November	d_Nutz,11 [d/M]	22	(Lt. ÖNORM B 8110-5)	
Nutzungstage Dezember	d_Nutz,12 [d/M]	23	(Lt. ÖNORM B 8110-5)	
Nutzungstage pro Jahr	d_Nutz,a [d/a]	269	(Lt. ÖNORM B 8110-5)	
Tägliche Nutzungszeit	t_Nutz,d [h/d]	12	(Lt. ÖNORM B 8110-5)	
Nutzungsstunden zur Tageszeit pro Jahr	t_Tag,a [h/a]	2.970	(Lt. ÖNORM B 8110-5)	
Nutzungsstunden zur Nachtzeit pro Jahr	t_Nacht,a [h/a]	258	(Lt. ÖNORM B 8110-5)	
Tägliche Betriebszeit der raumlufttechnischen Anlage	t_RLT, d [h/d]	14	(Lt. ÖNORM B 8110-5)	
Betriebstage der raumlufttechnischen Anlage pro Jahr	d_RLT,a [d/a]	269	(Lt. ÖNORM B 8110-5)	
Tägliche Betriebszeit der Heizung	t_h,d [h/d]	14	(Lt. ÖNORM B 8110-5)	
Betriebstage der Heizung pro Jahr	d_h,a [d/a]	269	(Lt. ÖNORM B 8110-5)	
Tägliche Betriebszeit der Kühlung	t_c,d [h/d]	12	(Lt. ÖNORM B 8110-5)	
Tägliche Betriebszeit der Nachtlüftung	t_NL,d [h/d]	8	(Lt. ÖNORM B 8110-5)	
Solltemperatur des kond. Raumes im Heizfall	θ_ih [°C]	22	(Lt. ÖNORM B 8110-5)	
Solltemperatur des kond. Raumes im Kühlfall	θ_ic [°C]	26	(Lt. ÖNORM B 8110-5)	

n_L,RLT [1/h]

n_L,hyg [1/h]

n_L,NL [1/h]

 q_i,h,n [W/m²]

q_i,h,PH [W/m²]

q_i,c,n [W/m²]

wwwb [Wh/(m²d)]

E_m [lx]

2,00

1,05

1,50

380

2,95

3,50

5,85

9,00

Mit Toleranz

(Lt. ÖNORM B 8110-5)

(Lt. ÖNORM B 8110-5) (Lt. ÖNORM B 8110-5)

(Lt. ÖNORM B 8110-5)

(Lt. ÖNORM B 8110-5)

(Lt. ÖNORM B 8110-5) (Lt. ÖNORM B 8110-5)

(Lt. ÖNORM B 8110-5)

(Lt. ÖNORM B 8110-5)

Lüftung			
Lüftungsart	Natürlich		
Kühlbedarf			
Sonnenschutz Einrichtung	Außen, Lamellenbehänge, Lamellen halboffen (bis zu 45°)		
Sonnenschutz Steuerung	Manuelle Bedienung		
Oberfläche Gebäude	Graue Oberfläche		
Beleuchtung			
Beleuchtungsenergiebedarf Ermittlungsart	Benchmark-Wert It. ÖNORM H 5059		

Endenergieanteile				
Erläuterungen:				
EEB _{RK}	Endenergiebedarf unter Referenzklimabedingungen			
EEB _{26,RK}	Vergleichswert des Endenergiebedarfes aufgrund des Anforderungsniveaus von 2007 ('26er-Linie') im Referenzzustand (Referenzklima, Referenzgebäude, Referenzausstattung)			
EEBSK	Endenergiebedarf unter Standortklimabedingungen			
f _{GEE}	Gesamtenergieeffizienzfaktor, $f_{GEE} = EEB_{RK} / EEB_{26,RK}$			

Endenergieanteile - Übersicht			
EEB-Anteil	EEB _{RK}	EEB _{26,RK}	EEBSK
	[kWh/m²]	[kWh/m²]	[kWh/m²]
Heizen	242,3	82,9	267,7
Warmwasser	5,2	8,0	5,2
Hilfsenergie Heizung+Warmwasser	0,5	0,5	0,6
Kühlen			
Betriebsstrom	17,0	20,8	17,0
Beleuchtung	25,8	31,6	25,8
Photovoltaik			
GESAMT (ohne Befeuchtung)	290,8	140,2	316,1
f _{GEE}	2,073		

Für Nichtwohngebäude werden folgende Komponenten des Endenergiebedarfes EEB $_{26,RK}$ folgendermaßen berechnet: Betriebsstrom: BSB = BSB * V/(3.BGF) entsprechend Geschoßhöhe 3 m; BSB gem. ÖNORM H 5050 Beleuchtung: BelEB = BelEB * V/(3.BGF) entsprechend Geschoßhöhe 3 m; BelEB gem. ÖNORM H 5059 Kühlen: KEB = KEB $_{26,RK}$ gemäß ÖNORM H 5050

Aufschlüsselung nach Energieträger					
Werte für Standortklima					
EEB-Anteil	Fernwärme Heizwerk (erneuerbar)	Strom-Mix	GESAMT		
	[kWh/m²]	[kWh/m²]	[kWh/m²]		
Heizen	267,7		267,7		
Warmwasser		5,2	5,2		
Hilfsenergie Heizung+Warmwasser		0,6	0,6		
Kühlen					
Betriebsstrom		17,0	17,0		
Beleuchtung		25,8	25,8		
Photovoltaik					
GESAMT (ohne Befeuchtung)	267,7	48,5	316,1		

HEB - Endenergie für Heizen und Warmwasserbereitung

(Werte in kWh/m²)

	EEB _{RK}	EEB _{26,RK}	EEBSK
Heizen	242,3	82,9	267,7
Verluste Heizen	318,6	128,9	352,3
Transmission + Lüftung	252,8	111,4	280,8
Verluste Heizungssystem	65,9	17,5	71,5
Abgabe	5,2	3,3	6,1
Verteilung	55,9	12,6	60,1
Speicherung			
Bereitstellung	4,8	1,6	5,2
Verluste Luftheizung			
Gewinne Heizen	76,3	46,0	84,6
Nutzbare solare + interne Gewinne	36,1	31,5	41,3
Nutzbare rückgewinnbare Verluste	40,1	14,5	43,3
Ertrag Solarthermie			
Umweltwärme Wärmepumpe			
Gewinnüberschuss*			
Warmwasser	5,2	4,5	5,2
Verluste Warmwasser	5,2	8,0	5,2
Nutzenergie Warmwasser	2,4	2,4	2,4
Verluste Warmwasser	2,7	5,6	2,7
Abgabe	0,3	0,3	0,3
Verteilung	0,2	1,0	0,2
Speicherung	2,3	4,2	2,3
Bereitstellung	0,0	0,2	0,0
Gewinne Warmwasser		3,7	
Ertrag Solarthermie			
Umweltwärme Wärmepumpe		3,7	
Rückgewinnbar Zirkulatuion / WT			
Gewinnüberschuss*			
Hilfsenergie Heizen + Warmwasser	0,5	0,5	0,6
Photovoltaik	,	,	<u>, </u>
Bruttoertrag			
Nettoertrag			
PV-Export			
Deckungsgrad [%]			
Nutzungsgrad [%]			
Kühlung			
Kältemaschine / Fernkälte			
Rückkühlung			
Pumpen Raumkühlung			
Pumpen RLT-Kühlung			
Umluftventilatoren Raumkühlung			
Ventilatoren RLT-Kreislauf			

*Gewinnüberschuss: Bei sehr hohen Erträgen aus Solarthermie oder Umweltwärme kann es vorkommen, daß die gesamten nutzbaren Wärmegewinne die Verluste übersteigen. Derartige Überschüsse werden für den Endenergiebedarf nicht berücksichtigt und finden sich in diesem Ausdruck mit negativem Vorzeichen ausgewiesen.

Realausstattung

WARMWASSERBEREITUNG

Allgemein Anordnung dezentral

Anzahl Wohneinheiten

BGF/Wohneinheit 276,27 m²

Nennwärmeleistung/Wohneinheit 1,66 kW (Defaultwert)

Warmwasserabgabe Art der Armaturen Zweigriffarmaturen (Fixwert)

Warmwasserbereitstellung Energieträger Strom

rt Elektrische WW-Bereitung od. gasbeheizter Speicher

RAUMHEIZUNG

Allgemein Anordnung zentral

BGF 276,27 m²

Nennwärmeleistung 26,74 kW (Defaultwert)

Wärmeabgabe Art Radiatoren, Einzelraumheizer (70/55 °C)

Art der Regelung Einzelraumregelung mit Thermostatventilen Systemtemperatur Radiatoren, Einzelraumheizer (70/55 °C)

Heizkreisregelung gleitende Betriebsweise

Verteilleitung Anordnung Unbeheizt

Wärmedämmung Rohrleitung Ungedämmt

Wärmedämmung Armaturen Armaturen ungedämmt Leitungslänge 18,11 m (Defaultwert)

Steigleitung Anordnung Unbeheizt

Wärmedämmung Rohrleitung Ungedämmt

Wärmedämmung Armaturen Armaturen ungedämmt Leitungslänge 22,1 m (Defaultwert)

Anbindeleitung Wärmedämmung Rohrleitung Ungedämmt

Wärmedämmung Armaturen Armaturen ungedämmt

Leitungslänge 154,71 m (Defaultwert)

Wärmespeicherung Art Kein Wärmespeicher für Raumheizung

Wärmebereitstellung Energieträger Fernwärme

Art Nah-/Fernwärme, Wärmetauscher

LÜFTUNG

Allgemeines Lüftung Art der Lüftung Fensterlüftung

BELEUCHTUNG

Jährlicher Benchmark-Wert gem. ÖNORM 25,8 kWh/m²

Beleuchtungsenergiebedarf H 5059

KÜHLUNG

Kühlsystem (Kein Kühlsystem vorhanden)

Projekt: Rathauspl	atz 2				Datum:	28. Juli 2022
Energiekennzahlen						
Gebäudekenndaten						
Brutto-Grundfläche		276,27	m²			
Bezugsfläche		221,02	m²			
Brutto-Volumen		1 015,29	m³			
Gebäude-Hüllfläche		804,89	m²			
Kompaktheit (A/V)		0,793	1/m			
Charakteristische Länge		1,26	m			
Mittlerer U-Wert		0,85	$W/(m^2K)$			
LEKT-Wert		78,19	-			
Ergebnisse am Standort						
Referenz-Heizwärmebedarf	HWB_ref SK	241,2	kWh/m²a	66 627	kWh/a	
Heizwärmebedarf	HWB SK	237,4	kWh/m²a	65 590	kWh/a	
Endenergiebedarf	EEB SK	316,1	kWh/m²a	87 334	kWh/a	
Gesamtenergieeffizienz-Faktor	fGEE SK	2,112				
Primärenergiebedarf	PEB SK	507,2	kWh/m²a	140 135	kWh/a	
Kohlendioxidemissionen	CO2 SK	26,8	kg/m²a	7 402	kg/a	
Ergebnisse						
Referenz-Heizwärmebedarf	HWB_ref RK	218,8	kWh/m²a			
Heizwärmebedarf	HWB RK	215,0	kWh/m²a			
Außeninduzierter Kühlbedarf	KB* RK	0,0	kWh/m³a			
Heizenergiebedarf	HEB RK	248,0	kWh/m²a			
Endenergiebedarf	EEB RK	290,8	kWh/m²a			
Gesamtenergieeffizienz-Faktor	fGEE RK	2,073				
erneuerbarer Anteil						
Primärenergiebedarf	PEB RK	466,7	kWh/m²a			
Primärenergiebedarf nicht erneuerbar	PEB-n.ern. RK	117,2	kWh/m²a			
Primärenergiebedarf erneuerbar	PEB-ern. RK	349,4	kWh/m²a			
Kohlendioxidemissionen	CO2 RK	25,3	kg/m²a			

rojekt. Italiiauspi	utz z		Dat	uiii.	20.	Juli 2022
	Gebäudedaten	(U-Wer	te, Heizlast) (S	K)		
		<u>.</u> bäudekennd				
Standort	2230 Gänserndorf		Brutto-Grundfläche		276,27	m²
Norm-Außentemperatur	-13,80 °C		Brutto-Volumen		1015,29	m³
Soll-Innentemperatur	22.00 °C		Gebäude-Hüllfläche		804,89	m²
Durchschnittl. Geschoßhöhe	3,67 m		charakteristische Länge		1,26	m
			mittlerer U-Wert		0,85	$W/(m^2K)$
			LEKT-Wert		78,19	-
Bauteile			Fläche [m²]	U-Wert [W/(m²K		Leitwert [W/K]
Decken zu unbeheiztem Dachraun	n		251,76		0,64	145,02
Außenwände (ohne erdberührt)			205,37		0,96	196,51
Fenster u. Türen			31,24		1,57	47,70
Decken zu unbeheiztem Keller			24,51		2,04	35,00
Wände zu unbeheizten Räumen			16,34		1,77	20,25
Decken zu unbeheizten Räumen			227,25		0,82	130,44
Wände zu unbeheizter Garage			48,41		1,16	50,54
Wärmebrücken (pauschaler Zusch	lag nach ÖNORM B 8110-6)					62,55
Fensteranteile			Fläche [m²]	Anteil [%]		
Fensteranteil in Außenwandfläche	n		22,52		9,68	
Summen (beheizte Hülle, netto F	Flächen)		Fläche [m²]			Leitwert [W/K]
Summe OBEN			251,76			
Summe UNTEN			251,76			
Summe Außenwandflächen			205,37			
Summe Innenwandflächen			64,75			
Summe						688,00
		Heizlast				
Spezifische Transmissionswärmev	verlust		0,68	W/(m³K)		
Gebäude-Heizlast (P_tot)			27,336	kW		
Spezifische Gebäude-Heizlast (P_	tot)		98,945	W/(m²BGF)		

	Fenster und Türen im Baukörper - kompakt																	
Ausricht [°]	Neig. [°]	Anz.	Fenster/Tür	Breite [m]	Höhe [m]	Fläche gesamt [m²]	Ug [W/(m²K]	Uf [W/(m²K]	Psi [W/(mK]	lg [m]	Uw [W/(m²K]	Glas- anteil [%]	g [-]	gw [-]	F_s_h [-]	A_trans_h [m²]	Qs [kWh]	Ant.Qs [%]
			SÜD															
180	90	8	AF1_1,7/1,45	1,70	1,45	19,72	1,10	1,30	0,06	7,80	1,35	70,99	0,58	0,51	0,50	3,58	2891,01	76,24
180	90	1	AT1_1,60/2,30	1,60	2,95	4,72	1,10	1,30	0,10	14,60	1,49	60,91	0,58	0,51	0,50	0,74	593,71	15,66
180	90	1	AF2_1,6/0,75_OL	1,60	0,75	1,20	1,10	1,30	0,06	3,90	1,37	64,17	0,58	0,51	0,50	0,20	159,01	4,19
SUM		10				25,64											3643,73	96,09
			WEST															
270	90	1	AF3_2,00/0,80	2,00	0,80	1,60	0,60	1,10	0,06	5,80	1,00	63,75	0,50	0,44	0,50	0,22	148,25	3,91
SUM		1				1,60											148,25	3,91
SUM	alle	11				27,24											3791,98	100,00

Legende: Ausricht. = Ausrichtung, Neig. = Neigung [°], Breite = Architekturlichte Breite, Höhe = Architekturlichte Höhe, Fläche = Gesamtfläche(außen), Ug = U-Wert des Glases, Uf = U-Wert des Rahmens, PSI = PSI-Wert, Ig = Länge d. Glasrandverbundes (pro Fenster), Uw = gesamter U-Wert des Fensters, Ag = Anteil Glasfläche, g = Gesamtenergiedurchlassgrad(g-wert) It. Bauteil, gw = wirksamer Gesamtenergiedurchlassgrad (g* 0.9 * 0.98), fs = Verschattungsfaktor, A_trans = wirksame Fläche (Glasfläche*gw*fs), Qs = solare Wärmegewinne, Ant. Qs = Anteil an den gesamten solaren Wärmegewinnen, (Wärmegewinne, Verschattungsfaktor und wirksame Fläche sind auf den Heizfall bezogen)

Baukörper-Dokumentation - kompakt

Projekt: Rathausplatz 2

Baukörper: Rathausplatz 2_Bestand

Beheizte Hülle

Bezeichnung	Länge	Breite	Höhe	Geschoße	Volumen	BGF ohne	BGF	BGF mit	beh.	A/V
	[m]	[m]	[m]		[m³]	Reduktion [m²]	Reduktion [m²]	Reduktion [m²]	Hülle [m²]	[1/m]
Rathausplatz 2 Bestand	0,00	0,00	0,00	4	1015,29	276,27	0,00	276,27	804,89	0,79

Außen-Wände

Bezeichnung	Bauteil	U-Wert	Anzahl	Breite	Höhe	Fläche	Fenster	Türen	Abzug	Fläche	Ausricht.	Zustand
		[W/m²K]		[m]	[m]	Brutto[m²]	[m²]	[m²]	Zuschl.[m²]	Netto[m²]	Neigung	
AW02 OG S	AW02_25 cm MWK WDVS	0,40	1,00	24,45	3,64	89,00	-19,72	0,00	0,00	69,28	180° / 90°	warm / außen
AW01 OG W	AW01_25 cm MWK	1,30	1,00	10,40	3,64	37,86	-1,60	0,00	0,00	36,26	270° / 90°	warm / außen
AW01 OG N	AW01_25 cm MWK	1,30	1,00	24,45	3,64	89,00	0,00	0,00	0,00	89,00	0° / 90°	warm / außen
AW01 OG O	AW01_25 cm MWK	1,30	1,00	0,50	3,64	1,82	0,00	0,00	0,00	1,82	90° / 90°	warm / außen
AW03 EG S Eingang	AW03_38 cm MWK WDVS	0,40	1,00	3,80	3,93	14,93	-1,20	-4,72	0,00	9,01	180° / 90°	warm / außen
SUMMEN						232,61	-22,52	-4,72	0,00	205,37		

Längs-Schnitte

Bezeichnung	Bauteil	U-Wert	Anzahl	Breite	Höhe	Fläche	Fenster	Türen	Abzug	Fläche	Ausricht.	Zustand
		[W/m ² K]		[m]	[m]	Brutto[m²]	[m²]	[m²]	Zuschl.[m²]	Netto[m²]	Neigung	
IW01 zu Anbau	IW01 25 cm MWK	1,16	1,00	9,90	3,64	36,04	0,00	0,00	0,00	36,04	- / 90°	warm / warm
IW01 Stgh EG zu Garagen	IW01_25 cm MWK	1,16	1,00	6,45	3,93	52,41	0,00	-4,00	27,06	48,41	- / 90°	warm /
												unbeheizte Garage
IW02 Stgh. EG zu Lager	IW02_10 cm MWK	1,77	1,00	3,80	4,30	16,34	0,00	0,00	0,00	16,34	- / 90°	warm / unbeheizter Nebenraum
SUMMEN						104,79	0,00	-4,00	27,06	100,79		

Decken

Datum: 28. Juli 2022

DI Johann Ertl - Zivilingenieur für Bauwesen

Baukörper-Dokumentation - kompakt

Projekt: Rathausplatz 2 Datum: 28. Juli 2022

Baukörper: Rathausplatz 2_Bestand

Bezeichnung	Bauteil	U-Wert [W/m²K]	Anzahl	Breite [m]	Höhe [m]	Fläche Brutto[m²]	Fenster [m²]	Türen [m²]	Abzug Zuschl.[m²]	Fläche Netto[m²]	Ausricht. Neigung	Zustand / Für BGF berücksichtigt
DE02 OG zu Dachboden	DE02 - Decke zu Dachboden	0,64	1,00	24,45	10,40	251,76	0,00	0,00	-2,52	251,76	0° / 0°	warm / unbeheizter Dachraum Decke /
DE01 OG zu EG	DE01 - Decke zu EG	0,82	1,00	24,45	10,40	227,25	0,00	0,00	-27,03	227,25	0° / 0°	warm / unbeheizter Nebenraum Decke oben / Ja
DE03 Stgh. EG - OG	DE03 - Decke Stgh. zu Stgh. EG- 1.OG	2,44	1,00	3,80	6,45	24,51	0,00	0,00	0,00	24,51	0° / 0°	warm / warm / Ja
DE04 Stgh. EG - KG	DE04 - Decke Stgh. zu Stgh. EG- KG	2,04	1,00	3,80	6,45	24,51	0,00	0,00	0,00	24,51	0° / 0°	warm / unbeheizter Keller Decke / Ja
SUMMEN						528,04	0.00	0.00	-29,54	528,04		

Volumen-Berechnung

Bezeichnung	Zustand	Geometrietyp	Volumen
			[m³]
Volumen OG	Beheiztes Volumen	Fläche x Höhe	914,91
Volumen EG Stgh.	Beheiztes Volumen	Fläche x Höhe	97,50
Volumen EG Stgh.	Beheiztes Volumen	Kubus	2,87
SUMME			1015,29

Projekt: Rathausplatz 2 Datum: 28. Juli 2022

Bauteil: AW01_25 cm MWK

Note	Verwendung: Auße	enwand								
- Wärmeübergangswiderstand Aussen Rs,e 0,040 1 Aussenputz ¹) 0,020 0,900 0,022 1 Holzspanbeton als Schalstein ohne Dämmeinlage 0,250 0,450 0,556 2 Holzspanbeton als Schalstein ohne Dämmeinlage 0,250 0,450 0,055 3 Innenputz ¹) 0,015 0,700 0,021 - Wärmeübergangswiderstand Innen Rs,i 0,130 Wärmeübergangswiderstand Innen Rs,i - 0,130 **National Company of the Company		Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
1 Aussenputz 1) 0,020 0,900 0,022	Außen	(Skizze)	Innen					[m]	[W/mK]	[m²*K/W]
Image: Problem of the problem of t						-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
3 Innenputz ¹) 0,015 0,700 0,021				ď	₩.	1	Aussenputz 1)	0,020	0,900	0,022
0,285 m *) R _T It. EN ISO 6946 = R _{Si} + Summe R-Wert der Schichten + R _{Se} 0,285 0,769 *)	The state of the state of					2	Holzspanbeton als Schalstein ohne Dämmeinlage	0,250	0,450	0,556
0,285 m *) RT It. EN ISO 6946 = R _{Si} + Summe R-Wert der Schichten + R _{Se} 0,285 0,769 *)		N (8)		ď	₩.	3	Innenputz 1)	0,015	0,700	0,021
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)		18				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)		***								
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)	11 1 1 1 88	15								
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)		TANK TO THE PARTY OF THE PARTY								
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)										
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)										
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wh								
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)										
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)		W								
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)	-1 1 1 1									
*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,285 0,769 *)	. 0.005 >									
	0,285 m									
	1, /			*) R _T	t. EN I	SO 6946	= R _{si} + Summe R-Wert der Schichten + R _{se}	0,285		0,769 *)
				Ú-We	rt [W/m	n²K]	<u> </u>			

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Bauteil: AW02_25 cm MWK WDVS

<u>/erwendung: A</u>	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen					[m]	[W/mK]	[m²*K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-		0,040
			\mathbf{r}		1	Kunststoffdünnputz	0,005	0,900	0,006
A STATE OF THE STATE OF	T- 27-07 (1)		₹	✓	2	Fassadendämmplatte EPS-F 1)	0,070	0,040	1,750
			ď	4	3	Aussenputz 1)	0,020	0,900	0,022
	1 1 (20)		₩.	✓	4	Holzspanbeton als Schalstein ohne Dämmeinlage	0,250	0,450	0,556
			ď	✓	5	Innenputz 1)	0,015	0,700	0,021
1 (6) / / /	() (2) (8)				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
11. 12 / 1									
	1 200								
	1 63								
	1 1 3 3 3 4								
	/ / 1983								
N 1 1 1 1	/ 6000								
1 1 1	1 0								
0,360 m									
0,000									
ı	1					S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,360		2,525 *)
			U-We	rt [W/m	2K]				0,40

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Datum: 28. Juli 2022 Projekt: Rathausplatz 2

Bauteil: AW03_38 cm MWK WDVS

Verwendung: Au	ußenwand								
	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen				-	[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
			V	N	1	Kunststoffdünnputz	0,005	0,900	0,006
1000			\mathbf{Y}	Ŋ	2	Fassadendämmplatte EPS-F 1)	0,070	0,040	1,750
			\mathbf{Y}	Y	3	Aussenputz 1)	0,020	0,900	0,022
	F F 688		M	Ŋ	4	Vollziegelmauerwerk 2)	0,380	0,760	0,500
18 18 18 1	f 1 393		\mathbf{Y}	Y	5	Innenputz 1)	0,015	0,700	0,021
118 / /	1 1 33				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
1 1 1	1 / 88								
(U) (U) (U) (U)	f f REA								
1 . 10 1	/ / /ASS								
130 /	f f f (1)(0)								
1.18 1	/ / NEW								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 8388								
	1 1 99								
1 1 1 1	1 1 1								
0,490) m								
0,490									
1.	. 1		*) R _T	t. EN I	SO 6946	i = R _{si} + Summe R-Wert der Schichten + R _{se}	0,490		2,469 *)
			U-We	rt [W/m	n²K]	<u> </u>			0,40

- ☑ wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt
- Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!
 Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!

Bauteil: IW01_25 cm MWK

Verwendung: Inn	enwand								
	Konstruktion			OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen				-	[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,130
			Y	V	1	Innenputz 1)	0,015	0,700	0,021
100000000000000000000000000000000000000			\mathbf{Z}	\mathbf{Z}	2	Holzspanbeton als Schalstein ohne Dämmeinlage	0,250	0,450	0,556
	6 TV (8)		\mathbf{Y}	\mathbf{Y}	3	Innenputz 1)	0,015	0,700	0,021
4 1 1 PA	(A. 45)				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
	46 1/20								
8 1 1 1 1 8	37.33								
1 1 1 1									
	NA SIA								
811118	N(89								
	y .								
0,280 m	I								
0,200 111	0,280 111								
	l	_ *	*) R _T It. EN ISO 6946 = R _{si} + Summe R-Wert der Schichten + R _{se} 0,280						0,858 *)
		ا	U-Wei	rt [W/m	n²K]				1,16

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Projekt: Rathausplatz 2 Datum: 28. Juli 2022

Bauteil: IW02 10 cm MWK

Verwendung: Inne	nwand					_			
Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert	
Außen	(Skizze)	Innen					[m]	[W/mK]	[m²*K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,130
			\mathbf{Z}	4	1	Innenputz 1)	0,015	0,700	0,021
A STATE OF THE			4	Y	2	Zwischenwandziegel	0,100	0,380	0,263
			\mathbf{Z}	Y	3	Innenputz 1)	0,015	0,700	0,021
					-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
(1111/08/08/2)									
111111111111111111111111111111111111111									
7 1 1 1 303822									
	4///03								
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 1 ASSESSED								
81 1 1 (36/23)									
0.130 m									
` '			*) R _T l	t. EN I	SO 6946	= R _{si} + Summe R-Wert der Schichten + R _{se}	0,130		0,566 *)
		-		rt [W/m					1,77

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Bauteil: DE03 - Decke Stgh. zu Stgh. EG-1.OG

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

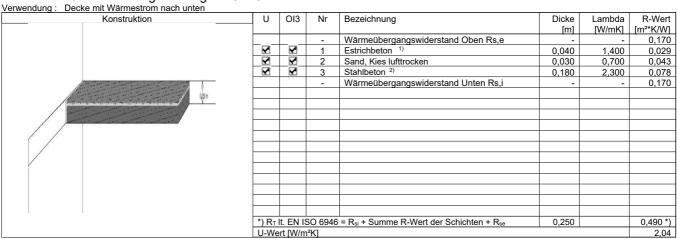
¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog! 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!

Projekt: Rathausplatz 2 Datum: 28. Juli 2022

Bauteil: DE02 - Decke zu Dachboden

Verwendung: Decke mit Wärmestrom nach oben							
Konstruktion		OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
					[m]	[W/mK]	[m ² *K/W]
			-	Wärmeübergangswiderstand Oben Rs,e	-	-	0,100
	\mathbf{Z}	✓	1	Betonflöz 1)	0,040	1,400	0,029
			2	Wärmedämmung 2)	0,040	0,040	1,000
	\mathbf{Z}	✓	3	Sand, Kies lufttrocken	0,020	0,700	0,029
A Committee of the Comm			4	Decken: Ziegelhohlkörper mit Aufbeton 2)	0,220	0,700	0,314
0000			-	Wärmeübergangswiderstand Unten Rs,i	-	-	0,100
120 m							
The same of the sa							
and the same of th							
	*) R _T	It. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,320		1,571 *)
	U-We	ert [W/m	n²K]				0,64

- ☑ wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt
- 1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!
- 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!


Bauteil: DE01 - Decke zu EG

- ☑ wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt
- 1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!
- 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!

Projekt: **Rathausplatz 2** Datum: 28. Juli 2022

Bauteil: DE04 - Decke Stgh. zu Stgh. EG-KG

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

- 1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!
- 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: **Rathausplatz 2** Datum: 28. Juli 2022

Außenfenster: AF1 1,7/1,45

Breite : 1,70 m Höhe : 1,45 m Glasumfang : 7,80 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas (Ug 1,1, g=58%) 1)
Rahmen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 ψ : 0,060 W/(m·K) Glasumfang: 7,80 m

Zusammenfassung

Glasfläche: 1,75 m²

Rahmenfläche: 0,72 m²

Gesamtfläche: 2,47 m² Glasanteil: 71%

U-Wert: 1,35 W/m²K g-Wert: 0,58

U-Wert bei 1,23m x 1,48m : 1,31 W/m²K

DI Johann Ertl - Zivilingenieur für Bauwesen

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: **Rathausplatz 2** Datum: 28. Juli 2022

Außenfenster: AF2_1,6/0,75_OL

Breite : 1,60 m Höhe : 0,75 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10		Zweifach-Wärmeschutzglas (Ug 1,1, g=58%) 1)
Rahmen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	0		0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 ψ : 0,060 W/(m·K) Glasumfang: 3,90 m

Zusammenfassung

 $\begin{array}{ll} \text{Glasfläche:} & 0,77 \text{ m}^2 \\ \text{Rahmenfläche:} & 0,43 \text{ m}^2 \end{array}$

Gesamtfläche: 1,20 m² Glasanteil: 64%

U-Wert: 1,37 W/m²K g-Wert: 0,58

U-Wert bei 1,23m x 1,48m : 1,31 W/m²K

DI Johann Ertl - Zivilingenieur für Bauwesen

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Rathausplatz 2 Datum: 28. Juli 2022

Außenfenster: AF3 2,00/0,80

 Breite :
 2,00 m

 Höhe :
 0,80 m

 Glasumfang :
 5,80 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,60	-	Dreifach-Wärmeschutzglas (Ug 0,6, Ar, g = 50%) 1)
Rahmen	1	1,10	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,1) 1)
Vertikal-Sprossen	1	1,10	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,1) 1)
Horizontal-Sprossen	0		0.00	PVC-Hohlprofile 5 Kammern (Uf 1,1) 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 ψ : 0,060 W/(m·K) Glasumfang: 5,80 m

Zusammenfassung

 $\begin{array}{ll} \text{Glasfläche:} & 1,02 \text{ m}^2 \\ \text{Rahmenfläche:} & 0,58 \text{ m}^2 \end{array}$

Gesamtfläche: 1,60 m² Glasanteil: 64%

U-Wert: 1,00 W/m²K g-Wert: 0,50

U-Wert bei 1,23m x 1,48m : 0,89 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Rathausplatz 2 Datum: 28. Juli 2022

Außentür: AT1 1,60/2,30

 Breite :
 1,60 m

 Höhe :
 2,95 m

 Glasumfang :
 14,60 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas (Ug 1,1, g=58%) 1)
Rahmen	1	1,30	0,15	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	1	1,30	0,15	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	1	1,30	0,15	PVC-Hohlprofile 5 Kammern (Uf 1,3)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 ψ : 0,100 W/(m·K) Glasumfang : 14,60 m

Zusammenfassung

Glasfläche: 2,88 m²

Rahmenfläche: 1,85 m²

Gesamtfläche: 4,72 m² Glasanteil: 61%

U-Wert: 1,49 W/m²K g-Wert: 0,58

U-Wert bei 1,48m x 2,18m : 1,35 W/m²K

DI Johann Ertl - Zivilingenieur für Bauwesen

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: **Rathausplatz 2** Datum: 28. Juli 2022

Innentür: IT1_1,00/2,00

Breite : 1,00 m Höhe : 2,00 m

Glasumfang: ---

Direkte U-Wert €ingabe Dichtheit nach ÖNORM B 5300 klassifiziert :

Zusammenfassung

 $\begin{array}{ll} \mbox{Glasfläche}: & 0,00 \ \mbox{m}^2 \\ \mbox{Rahmenfläche}: & 2,00 \ \mbox{m}^2 \end{array}$

Gesamtfläche: 2,00 m² Glasanteil: 0%

Dieser Bauteil wurde mittels direkter U-Wert Eingabe erfasst.

Der Nachweis des U-Wertes erfolgte nicht mit diesem Programm oder wurde von Dritten beigesteuert.

Die externen Nachweise sind der Dokumentation beigelegt.

U-Wert: 3,00 W/m²K g-Wert: 0,60

U-Wert bei 1,23m x 2,18m : 3,00 W/m²K